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0.1 Note to the reader

I’ve always found resources on representation theory to be frustrating to read. Some
omit too many details for the level of my background. Some discuss everything in
terms of modules, a perspective which I don’t really find intuitive at all. But repre-
sentation theory is a really nice theory, and I think it should be more accessible to
more people. So here’s my attempt at writing the reprsentation theory introduction
I’ve wanted to read,

These notes assume you’ve taken a course in abstract algebra that included group
theory and that you’ve taken a course in linear algebra which talked about vector
spaces and inner products. Representation theory needs a few fancy linear algebra
concepts, so I’ve included an appendix which explains them. Although it’s called
an “appendix,” I really recommend you read the whole appendix first, as if it were
Chapter 0.1

If I’ve written something incorrect or unclear, please don’t hesitate to send me
an email letting me know. If you have ideas about how to better organize the notes
or even ways I could make them look nicer, please let me know. Thanks for reading!

1Unless you’re some linear algebra deity, skimming the appendix will at least reassure you that
you know all the relevant information.
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0.2 Motivation

Mathematics is often about recognizing structure that was “there all along.” In
the case of group theory, which can be thought of as the study of the structure
of symmetries, there is a natural structure that is often brushed over: “the action
of symmetries on space.” If you consider a group of reflections or rotations, you
are probably already imagining some sort of action on space, namely reflections and
rotations. Representation theory, at the basic level, is about exploring this viewpoint
of symmetry through the lens of linear algebra.

Why does this viewpoint merit its own theory? Linear algebra has a lot of
structure and is very nice, compared to theories such as real analysis, which are
filled with counterexamples to intuitive notions. Since group theory can be very
messy, “filtering” information about a group into information in the language of
linear algebra provides an easy to compute but still useful reduction of the theory.
Besides, it’s cool!



Chapter 1

Representation theory of finite
groups over C

1.1 Representations

1.1.1 Definition and examples

Example 1.1.1. Consider the dihedral group D8, the group of rotations and reflec-
tions of a square. You may already be imagining the square as lying in the plane
similar to this:
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The group D8 has 8 elements, where e is the identity rotation, s is reflection about
the x-axis, and r is counterclockwise rotation by 90 degrees:

D8 = {e, s, r, r2, r3, sr, sr2, sr3}.

Here, we view the element sr as meaning “first rotate, then reflect”; that is, we
read the action from right to left. The group has an inherent “multiplication” by
composing the reflections and rotations, and we can calculate that r4 = e (rotating 4
times by 90 degrees does nothing in total) and s2 = e (reflecting twice does nothing).
We can also work out that rs = sr3; these 3 relations tell us the entire multiplicative
structure of the group D8.

There is another viewpoint: these transformations can be thought of as reflec-
tions and rotations of the plane, taking the square along for the ride. We labeled
these elements of the group as the letters r and s, but we can also talk about the
corresponding rotations and reflections as linear transformations. That is,

r =

[
0 −1
1 0

]
, s =

[
1 0
0 −1

]
.

In this case, D8 is isomorphic to a group of 2 × 2 real matrices. Formally, we have
an isomorphism ρ : D8 → GL2(R), with codomain the group of invertible 2× 2 real
matrices.

The idea of representation theory is to do this with any group. But instead of only
looking for isomorphisms to matrix groups, we look at homomorphisms to matrix
groups; this will give us a more complete structure to look at.

Definition 1.1.1. Let G be a group. A representation of G is a pair (ρ, V ), where
V is a vector space and ρ : G→ Aut(V ) is a homomorphism.

In other words, a representation is a map which takes a group G and represents
every g ∈ G as an invertible linear transformation (or a matrix).

Example 1.1.2. Let G = Z/2Z, and let V = R2. A natural representation of G is
to think of it as a reflection about one of the axes:

ρ(0) =

[
1 0
0 1

]
, ρ(1) =

[
−1 0
0 1

]
.

Alternatively, we could have used another reflection, such as reflection about the line
y = x:

ρ(0) =

[
1 0
0 1

]
, ρ(1) =

[
0 1
1 0

]
.
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As this example shows, any group, no matter how small, will have a lot of repre-
sentations.

Example 1.1.3. Given any group G and a field F , the trivial representation
(ρ, F ) is defined by ρ(g) = 1, where ρ(g) is viewed as a 1× 1 matrix.

Example 1.1.4. Let S3 be the symmetric group on 3 elements. We can represent the
elements of S3 as 3× 3 permutation matrices, permuting the standard basis vectors
e1, e2, e3. In other words, we have a representation (ρ,R3) with

ρ(e) =

1 0 0
0 1 0
0 0 1

 , ρ(
(
1 2

)
) =

0 1 0
1 0 0
0 0 1

 , ρ(
(
1 3

)
) =

0 0 1
0 1 0
1 0 0

 ,
ρ(
(
2 3

)
) =

1 0 0
0 0 1
0 1 0

 , ρ(
(
1 2 3

)
) =

0 0 1
1 0 0
0 1 0

 , ρ(
(
1 3 2

)
) =

0 1 0
0 0 1
1 0 0

 .
Remark 1.1.1. Why are all the matrices ρ(g) for g ∈ G automorphisms? That is,
why are they invertible linear transformations V → V ? This is because elements of
a group always have inverses, so ρ(g−1) is the inverse of ρ(g):

ρ(g) · ρ(g−1) = ρ(gg−1) = ρ(e) = IV ,

where IV is the identity on V .

Remark 1.1.2. When the target vector space V is understood, we refer to the
representation as just ρ or ρV . Similarly, when the representation is understood and
we are referring to properties of the target vector space, it is common to refer to the
representation as V itself.

Remark 1.1.3. One can consider representations over different fields, meaning the
vector space V can be over any desired field. We will mostly stick with C, the
complex numbers.

Example 1.1.5. Let ρ : G→ C× be a homomorphism. Then (ρ,C) is a representa-
tion of G, where ρ(g) is viewed as a 1× 1 matrix.

Example 1.1.6. We can construct a permutation representation of any group.
Consider a group action G � X, where X is a finite set. This takes every element
g ∈ G to a permutation of X, so we get an embedding ϕ : G→ Sn, where n = |X|.
We can define the representation ρ : G → Cn sending g to the permutation matrix
corresponding to ϕ(g).
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This is actually an instance of a more general construction.

Example 1.1.7. We can get representations of larger groups if we know represen-
tations of smaller ones (and vice-versa). Let ϕ : G→ H be a group homomorphism.
If ρ : H → V is a representation of H, then ρ ◦ ϕ is a representation of G.

Example 1.1.8. The group S3 has a subgroup of order 3,

A3 = {e,
(
1 2 3

)
,
(
1 3 2

)
, }.

This subgroup is normal in S3, and S3/A3 has order 2, so S3/A3
∼= Z/2Z. In partic-

ular, we have the natural quotient map ϕ : S3 → Z/2Z. We already saw a represen-
tation of Z/2Z, so we can “lift” this representation up to S3; we determine ρ(g) by
first sending g to its image in Z/2Z and then representing using the representation
of Z/2Z:

ρ(e) =

[
1 0
0 1

]
, ρ(

(
1 2

)
) =

[
−1 0
0 1

]
, ρ(

(
1 3

)
) =

[
−1 0
0 1

]
,

ρ(
(
2 3

)
) =

[
−1 0
0 1

]
, ρ(

(
1 2 3

)
) =

[
1 0
0 1

]
, ρ(

(
1 3 2

)
) =

[
1 0
0 1

]
.

1.1.2 Change of basis

How does change of basis play into our representations? A representation is a homo-
morphism ρ : G → Aut(V ), but we have been writing the images ρ(g) as matrices,
not just linear transformations. There is an underlying choice of basis involved (the
standard basis). If we choose a different basis, do we get different representations?
In some sense, they should be the same.

Definition 1.1.2. Let (ρV , V ) and (ρW ,W ) be representations of G. A represen-
tation homomorphism is a linear map ϕ : V → W such that ϕ◦ρV (g) = ρW (g)◦ϕ
for all g ∈ G.

V V

W W

ρV (g)

ϕ ϕ

ρW (g)

We denote the collection of representation homomorphisms from V → W as
HomG(V,W ).
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Definition 1.1.3. Two representations (ρV , V ) and (ρW ,W ) are isomorphic (de-
noted V ∼= W ) if there is an invertible representation homomorphism ϕ : V → W ;
that is, ρV (g) = ϕ−1 ◦ ρW (g) ◦ ϕ for all g ∈ G.

V V

W W

ρV (g)

ϕ

ρW (g)

ϕ−1

If we express this in terms of matrices, this means that there is some change of
basis matrix P such that ρV (g) = P−1ρW (g)P for all g ∈ G. In particular, this says
that V and W are the same representation, just expressed in a different basis.

Example 1.1.9. Recall our two 2 dimensional representations of Z/2Z, correspond-
ing to different reflections of R2:

ρ1(0) =

[
1 0
0 1

]
, ρ1(0) =

[
−1 0
0 1

]
.

ρ2(0) =

[
1 0
0 1

]
, ρ2(1) =

[
0 1
1 0

]
.

These representations are isomorphic: if we apply the change of basis

P =

[
1 1
−1 1

]
,

then ρ2 in the new basis is the same as ρ1 in the standard basis.
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1.2 Vector space constructions of representations

1.2.1 Direct sum, tensor product and dual representations

Representations tend to play very nice with the vector space structure. If we think
of representations as vector spaces carrying the additional structure of the action of
G via the homomorphism ρ, then this section is about extending usual vector space
constructions to constructions with extra structure.1

References for direct sums, tensor products, and dual spaces of vector spaces are
in the appendix.

Definition 1.2.1. Let V,W be representations of G (with associated homomor-
phisms ρV , ρW ). The direct sum of V and W , denoted V ⊕W , is the vector space
V ⊕W . The associated homomorphism ρV⊕W is defined as:

[ρV⊕W (g)](v, w) = ([ρV (g)]v, [ρW (g)]w).

In other words, if we have the actions G � V and G � W via two representations,
then we can combine these representations by having G act on the V and W parts
of V ⊕W separately.

If V has ordered basis {v1, . . . , vn} and W has ordered basis {w1, . . . , wm}, then
V ⊕W has ordered basis {v1, . . . , vn, w1, . . . , wm}. We then have the matrix repre-
sentation of ρV⊕W :

ρV⊕W (g) =

[
ρV (g) 0

0 ρW (g)

]
.

Definition 1.2.2. Let V,W be representations of G (with associated homomor-
phisms ρV , ρW ). The tensor product of V and W , denoted V ⊗W , is the vector
space V ⊗W . The associated homomorphism ρV⊗W is defined as:

[ρV⊕W (g)](v ⊗ w) = [ρV (g)]v ⊗ [ρW (g)]w.

If V has ordered basis {v1, . . . , vn} and W has ordered basis {w1, . . . , wm}, then
V ⊗W has the basis {vi ⊗ wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Suppose that in these bases,
we can write

ρV (g) = A, ρW (g) = B.

1For the reader acquainted with the viewpoint of category theory, this section may be thought
of as constructions in the category of representations of a fixed group G.
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Then the matrix form of ρV⊗W (g) is (written as a block matrix):

ρV⊗W (g) =


a1,1B a1,2B · · · a1,nB
a2,1B a2,2B · · · a2,nB
...

...
. . .

...
an,1B an,2B · · · an,nB

 .
Definition 1.2.3. Let V be a representation of G with associated homomorphism
ρV . The dual representation, denoted ρV ∗ , is the representation V ∗ with associated
homomorphism

ρV ∗(g) = ρV (g−1)∗,

where * denotes the dual map.

In terms of matrices, we have

ρV ∗(g) = ρV (g−1)>.

Remark 1.2.1. Why do we have to take the inverse of the group element g? One
way to see why is that we want ρV ∗ to be a homomorphism. Since (AB)∗ = B∗A∗,
we need to another map of this type (an involution) to make the homomorphism
property work out right.

Here is a more satisfying line of reasoning: For v ∈ V and f ∈ V ∗, let 〈v, f〉
denote f(v). If we want the dual representation to act similarly on V ∗ to how the
original representation acts on V , it might be reasonable to want

〈v, f〉 = 〈ρV (g)v, ρV ∗(g)f〉 .

Check that our definition for the dual representation satisfies this property.2

1.2.2 Subrepresentations and decomposition into irreducible
representations

Suppose we take representations V and W of G and construct V ⊕ W . V can
be recognized as a vector subspace of V ⊕W , but what about the representation
structure? How do we identify when a representation contains a subspace which is
actually a smaller representation?

2Get off your butt and do it. I mean actually get out something to write with and check that the
property holds. It may be symbol pushing, but it’ll help you internalize the dual representation.
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Definition 1.2.4. Let V be a representation of a group G. A representation W is a
subrepresentation of G if W is stable under the action of G (i.e. W is ρV (g)-stable
for all g ∈ G.

Example 1.2.1. Let Sn act on Cn via its natural permutation representation (i.e.
permuting the basis vectors e1, . . . , en). Let W = span({e1 + · · ·+ en}). Then W is
a 1-dimensional subrepresentation of this natural representation that is isomorphic
to the trivial representation.

If W is a subrepresentation of V , then ρW (g) := ρV (g)|W for each g ∈ G defines
a representation on W . But what about the remaining part of V ? Can we guarantee
that V = W ⊕W ′, where W ′ is another representation of G?

Lemma 1.2.1. Let W be a subrepresentation of (ρ, V ) over C. Then there is a
representation W ′ such that V ∼= W ⊕W ′.

The idea of the proof is to symmetrize a projection to find a complement which
is also stable under the action of G. Let’s say G = Z/2Z, with the representation

ρ(0) =

[
1 0
0 1

]
, ρ(1) =

[
−1 0
0 1

]
.

Then the x-axis is a subrepresentation, and we want to say that the y-axis, which is
also invariant under ρ, is a good choice for W ′.

Start with some non-orthogonal projection onto the x-axis; you can imagine shin-
ing a light from 45 degrees and looking at the shadow. Apply ρ(1) to reflect this
projection across the x-axis; after reflecting, we’re shining a light from 135 degrees
and looking at the shadow. When taking the average of these these two (flipped
and original) projections, the opposite components cancel out; in our example, the
average is shining a light from 90 degrees, at high noon. This procedure gives as a
suitable projection to use to find a good complement W ′ of W .

Proof. Let T : V → V be a projection onto W . We create an altered (symmetrized)
version of T by letting

T ′ :=
1

|G|
∑
g∈G

ρ(g) ◦ T ◦ ρ(g)−1.

We claim that this is also a projection onto W . Note that T maps V into W .
Additionally, for x ∈ W , T ◦ ρ(g)−1x = ρ(g)−1x, so ρ(g) ◦ p ◦ ρ(g)−1x = x, which
gives T ′x = x. So T ′ is also a projection of V into W .
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Now let W ′ = ker(T ′). We now just need to show that W ′ is also stable under
ρ(g) for all g ∈ G. Note that

ρ(g) ◦ T ′ ◦ ρ(g)−1 =
1

|G|
∑
h∈G

ρ(g)ρ(g) ◦ T ◦ ρ(h)−1ρ(g)−1

=
1

|G|
∑
h∈G

ρ(gh) ◦ T ◦ ρ(gh)−1

= T ′,

where we have just reindexed the sum by left multiplication by g. We now have
ρ(g) ◦ T ′ = T ′ ◦ ρ(g), so for x ∈ W ′,

T ′ ◦ ρ(g)x = ρ(g) ◦ T ′x = 0.

Hence, ρ(g)x ∈ W ′ = ker(T ′), so W ′ is invariant under ρ(g).
To summarize, we have found V = W ⊕W ′, where W and W ′ are invariant under

ρ(g) for all g ∈ G, making W,W ′ subrepresentations of V .

Remark 1.2.2. This result holds for fields other than C, as long as char(F ) - |G|.
This is what allows us to safely divide by |G|.

Remark 1.2.3. Here is a simpler proof of the lemma for inner product spaces. If
we have an inner product, we can make it invariant under the action of G (i.e.
〈v, w〉 = 〈ρ(g)v, ρ(g)w〉 for all g ∈ G) by replacing the inner product by 〈v, w〉G :=

1
|G|
∑

g∈G 〈ρ(g)v, ρ(g)w〉. Then, if we let W ′ be the orthogonal complement of W

with respect to this G-invariant inner product, W ′ is also stable under the action of
G.

As you might hope, the notion of a representation homomorphism is compatible
with the notion of subrepresentations. In particular, vector subspaces induced by
a representation homomorphism, ker(ϕ) and im(ϕ), are subrepresentations of their
respective vector spaces.

Proposition 1.2.1. Let ϕ : V → W be a representation homomorphism. Then
ker(ϕ) and im(ϕ) are subrepresentations of V and W , respectively.

Proof. We show that for each g ∈ G, ρV (g)(ker(ϕ)) ⊆ ker(ϕ) and ρW (g)(im(ϕ)) ⊆
im(ϕ). Fix g ∈ G.
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• ρV (g)(ker(ϕ)) ⊆ ker(ϕ): Let v ∈ ker(ϕ). Since ϕ is a representation homomor-
phism,

ϕ(ρV (g)v) = ρW (g)ϕ(v) = ρW (g)0 = 0.

So if v ∈ ker(ϕ), then ρV (g)v ∈ ker(ϕ); that is, ρV (g)(ker(ϕ)) ⊆ ker(ϕ).

• ρW (g)(im(ϕ)) ⊆ im(ϕ): Let v ∈ V . Since ϕ is a representation homomorphism,
ρW (g)ϕ(v) = ϕ(ρV (g)v) ∈ im(ϕ).

If W is a subrepresentation of V , then there is some basis in which the matrices
ρV (g) all look like

ρV (g) =

[
ρW (g) 0

0 ρW ′(g)

]
.

We can then think of the notion of breaking down representations into smaller sub-
representations. Since the dimension decreases each time we take subrepresentations,
this procedure must terminate after finitely many steps. So there have to be subrep-
resentations which cannot be broken down any further. What do these look like?

Definition 1.2.5. A representation V of G is irreducible if the only subrepresen-
tations of V are {0} and V itself.

Example 1.2.2. Any 1 dimensional representation is irreducible.

Example 1.2.3. S3 has the following two dimensional irreducible representation
(which we will not prove the irreducibility of at the moment). If S3 � C3 via the
natural permutation representation, then let W = span({e1 − e2, e2 − e3}). W is
irreducible, and if we let W ′ = span({e1 + e2 + e3}), C3 ∼= W ⊕W ′.

Theorem 1.2.1 (Maschke). Let V be a finite dimensional representation over C.
Then V admits a decomposition into irreducible representations: V ∼=

⊕r
i=1 Vi, where

the Vi are irreducible.

Proof. Proceed by induction on n = dim(V ). If n = 1, then V is irreducible,
Now suppose that the theorem is true for representations of dimension ≤ n. If
dim(V ) = n+ 1, and V is not irreducible, then let W be a nontrivial, proper subrep-
resentation. By the previous lemma, V ∼= W ⊕W ′ for some other subrepresentation
W ′. Applying the inductive hypothesis to W and W ′ (as dim(W ), dim(W ′) ≤ n)
gives a decomposition of V into irreducible representations.
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1.2.3 Hom(V,W ), HomG(V,W ), and Schur’s lemma

We can define a representation on Hom(V,W ), the collection of linear transforma-
tions T : V → W , as follows.

Definition 1.2.6. Let V,W be representations of G (with associated homomor-
phisms ρV , ρW ). Then Hom(V,W ) has the representation defined as follows: if
T : V → W is a linear transformation,

[ρHom(V,W )(g)]T := ρW (g) ◦ T ◦ ρV (g−1).

It turns out that we can express this representation in terms of our previous
constructions:

Proposition 1.2.2. Let V,W be finite dimensional representations of G. Then
Hom(V,W ) ∼= V ∗ ⊗W via the isomorphism ϕ : V ∗ ⊗W → Hom(V,W ) defined by

ϕ(f ⊗ w) = (v 7→ f(v)w)

and extended to all of V ∗ ⊗W bilinearly.

In other words, we can view a simple tensor f⊗w as a linear transformation from
V → W as follows: given v ∈ V , f “eats” v and returns the result as the coefficient
in front of w.3

Proof. We first need to show that ϕ is invertible. We will find an inverse ψ :
Hom(V,W ) → V ∗ ⊗ W . Let {v1, . . . , vn} be a basis of V , and let {v∗1, . . . , v∗n}
be the corresponding dual basis. Then define

ψ(T ) =
n∑
i=1

v∗i ⊗ Tvi.

ψ is linear:

ψ(aT + S) =
n∑
i=1

v∗i ⊗ (aT + S)vi = a
n∑
i=1

v∗i ⊗ Tvi +
n∑
i=1

v∗i ⊗ Svi = aψ(T ) + ψ(S).

To show that ψ is the inverse of φ, we check that for T ∈ Hom(V,W ) and
f ⊗ w ∈ V ∗ ⊗W ,

ϕ(ψ(T )) = ϕ

(
n∑
i=1

v∗i ⊗ Tvi

)
=

n∑
i=1

(v 7→ v∗i (v)Tvi) =

(
v 7→ T

(
n∑
i=1

v∗i (v)vi

))
= T,

3The proof of this proposition is notationally hard to follow symbol-pushing. I recommend you
try to prove it yourself and consult the proof here whenever you get stuck.
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ψ(ϕ(f ⊗ w)) = ψ((v 7→ f(v)w)) =
n∑
i=1

v∗i ⊗ f(vi)w =

(
n∑
i=1

f(vi)v
∗
i

)
⊗ w = f ⊗ w.

So ϕ is an invertible linear transformation.
To show that ϕ is an isomorphism of representations, we need to check that

[ρHom(V,W )(g)]T = [ψ−1 ◦ ρV ∗⊗W (g) ◦ ψ]T for all T ∈ Hom(V,W ). If g ∈ G, T ∈
Hom(V,W ), and v ∈ V , then

([ψ−1 ◦ ρV ∗⊗W (g) ◦ ψ]T )v =

[
ψ−1

(
ρV ∗⊗W (g)

(
n∑
i=1

v∗i ⊗ Tvi

))]
v

=

[
ψ−1

(
n∑
i=1

ρV ∗(g)v∗i ⊗ ρW (g)Tvi

)]
v

Using the fact that ψ−1 is ϕ,

=
n∑
i=1

(ρV ∗(g)v∗i )(v) · ρW (g)Tvi

= ρW (g)T

(
n∑
i=1

(ρV ∗(g)v∗i )(v)vi

)

= ρW (g)T

(
n∑
i=1

v∗i (ρV (g−1)v)vi

)

For any u ∈ V , u =
∑n

i=1 v
∗
i (u)vi; this is because v∗i (u) is just the coefficient of vi in

the decomposition of u with respect to this basis.

= ρW (g) ◦ T ◦ ρV (g−1)v

= [ρHom(V,W )(g)]Tv.

Let HomG(V,W ) be the collection of representation homomorphisms ϕ : V → W .
Just like Hom(V,W ) has structure as a vector space, HomG(V,W ) has structure
related to the representation structure of Hom(V,W ).

Proposition 1.2.3. HomG(V,W ) is the subspace of Hom(V,W ) of linear maps fixed
by the action of G. That is,

A ∈ HomG(V,W ) ⇐⇒ A = ρV (g−1)AρW (g) ∀g ∈ G.
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Proof. Recall that ρV , ρW are homomorphisms.

A ∈ HomG(V,W ) ⇐⇒ ρV (g)A = AρW (g) ∀g ∈ G
⇐⇒ A = (ρV (g))−1AρW (g) ∀g ∈ G
⇐⇒ A = ρV (g−1)AρW (g) ∀g ∈ G.

Moreover, there exists a natural projection of Hom(V,W ) onto HomG(V,W ).

Proposition 1.2.4. Let V,W be representations of G. Then the linear map ϕ :
Hom(V,W )→ Hom(V,W ) defined by

ϕT :=
1

|G|
∑
g∈G

ρHom(V,W )(g)T

is a projection from Hom(V,W ) onto HomG(V,W ).

Proof. First, we show that im(ϕ) ⊆ HomG(V,W ). Let S = ϕ(T ), where T ∈
Hom(V,W ). Then, for any h ∈ G,

ρHom(V,W )(h)S = ρHom(V,W )(h)ϕT

=
1

|G|
∑
g∈G

ρHom(V,W )(h)ρHom(V,W )(g)T

=
1

|G|
∑
g∈G

ρHom(V,W )(hg)T

Left multiplication of all the elements of G by h just reindexes the sum.

= ϕT

= S.

So S is fixed by the action ofG, meaning S ∈ HomG(V,W ). So im(ϕ) ⊆ HomG(V,W ),
as claimed.

On the other hand, suppose that T ∈ HomG(V,W ) (i.e. T is fixed by the action
of G on Hom(V,W )). Then

ϕT =
1

|G|
∑
g∈G

ρHom(V,W )(g)T =
1

|G|
∑
g∈G

T = T.

This shows that Hom(V,W ) ⊆ im(ϕ) and that ϕ2 = ϕ.
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The following lemma tells us even more about the structure of HomG(V,W ), in
the case where V and W are irreducible representations. It says that there are barely
any representation homomorphisms between irreducible representations.

Lemma 1.2.2 (Schur). Let V,W be irreducible representations of a group G over
C, and let ϕ : V → W be a representation homomorphism between them. Then there
are two cases:

1. If V,W are not isomorphic, then ϕ = 0.

2. If (ρV , V ) = (ρW ,W ), ϕ = λI for some λ ∈ C.

In other words,

HomG(V,W ) ∼=

{
span({I}) V ∼= W

{0} V 6∼= W.

Proof. Consider ker(ϕ) and im(ϕ). These are subrepresentations of V and W , re-
spectively. Since V and W are irreducible, each of these is either {0} or the whole
space. If ker(ϕ) = V , then ϕ = 0.

Otherwise, ker(ϕ) = {0}, which makes im(ϕ) 6= {0}. Then im(ϕ) = W , so ϕ is a
linear bijection between V and W , making V ∼= W .

In this case, if V = W , note that ϕ must have an eigenvalue λ since C is alge-
braically closed. This means that ker(ϕ − λI) 6= {0} because ϕ has an eigenvector.
ϕ− λI is a representation homomorphism:

ρV (g)(ϕ− λI) = ρV (g)ϕ− λρV (g) = ϕρW (g)− λρW (g) = (ϕ− λI)ρW (g).

So ker(ϕ− λI), a nontrivial subrepresentation of V , equals V . That is, ϕ = λI.

Remark 1.2.4. In the proof, we discussed the case where V = W (actual equality,
not just isomorphism). Extending to the case of isomorphism is a bit subtle.4 If we
have V ∼= W , rather than just V = W , then V = ψ(W ) for some representation
isomorphism ψ. By the equality case, HomG(V, ψ(W )) = span({I}). Since every
ϕ ∈ HomG(V,W ) admits a ψ ◦ ϕ ∈ HomG(V, ψ(W )) (and ψ ◦ ϕ = λI for some
λ), we must have that HomG(V,W ) = span({ψ−1}). In this case, we still have
HomG(V,W ) ∼= span({I}); that is, the corresponding statement up to isomorphism
is still true.

Remark 1.2.5. This result holds for fields other than C, as long as they are alge-
braically closed.

4This is a subtlety I’ve never really seen discussed anywhere. My guess is that it mostly goes
unnoticed, since people tend to treat isomorphism as equality in their minds.
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1.3 Characters of Representations

1.3.1 Characters and class functions

Representations can be a lot of information to deal with. Here is an extremely useful
reduction which does not give away too much information. We take the trace of the
representation.5

Definition 1.3.1. Given a representation (ρV , V ) of a group G, the character
χV : G→ C is the function

χV (g) := tr(ρV (g)).

Example 1.3.1. Let Sn � Cn by its natural permutation representation. What
is the character of this representation? The trace of a permutation matrix is the
number of fixed points of the permutation. So for all σ ∈ Sn,

χ(σ) = |{1 ≤ i ≤ n : σ(i) = i}|.

Example 1.3.2. Let W be the 2 dimensional irreducible representation of S3 intro-
duced in the previous section. Then if τ =

(
1 2

)
and σ =

(
1 2 3

)
,

ρW (σ) =

[
0 −1
1 −1

]
, ρW (τ) =

[
−1 1
0 1

]
.

So we get χW (σ) = −1, χW (τ) = 0, and χW (e) = 2.

Example 1.3.3. The character of the trivial representation, χ(g) = 1 for all g ∈ G,
is called the trivial character.

Here is a case where no information is lost in reducing a representation to its
character.

Example 1.3.4. If ϕ : G → C× is a homomorphism, we can view ϕ as a 1 dimen-
sional representation, where ϕ(g) is thought of as a 1 × 1 matrix. In this case, the
character χ = ϕ.

In the same vein, if ρ is a 1-dimensional representation of G, χ(g) = ρ(g) for all
g ∈ G, since the trace of a 1× 1 matrix is the entry contained within. In this case,
χ is called an abelian character.

5The trace of a matrix is a kind of divine magic, the workings of which have been lost to the
ages. The immense power of this arcane magic is what makes this part of the theory so nice.
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The following proposition should convince you that not so much information is
lost in general when passing from a representation to its character.

Proposition 1.3.1. Let V be a representation of dimension n. Then

χV (e) = dim(V ).

Proof. The trace of the identity matrix is the number of columns in the matrix. This
is the dimension of the vector space V .

Actually, characters are a simpler reduction than you would expect at first glance.
You only need to know the values of χ on a representative of each conjugacy class of
G.

Definition 1.3.2. A class function is a function on a group G that is constant on
conjugacy classes of G.

Proposition 1.3.2. Let (ρV , V ) be a representation and χV be its character. Then
χV is a class function.

Proof. Let a, b ∈ G share the same conjugacy class; then there exists some g ∈ G
such that b = gag−1. Since the trace is invariant under conjugation,

χV (b) = tr(ρV (gag−1)) = tr(ρV (g)ρV (a)(ρV (g))−1) = tr(ρV (a)) = χV (a).

Here is how characters play with our vector space constructions of representations.

Proposition 1.3.3. Given representations (ρV , V ), (ρW ,W ) of a group G, ∀g ∈ G,
the following identities hold:

χV⊕W (g) = χV (g) + χW (g),

χV⊗W (g) = χV (g)χW (g),

χV ∗(g) = χV (g−1).

If V is a vector space over C, we have

χV ∗(g) = χV (g),

where the bar denotes complex conjugation.
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Proof. For the first two identities, consider the block matrix forms of ρV⊕W and
ρV⊗W :

ρV⊕W (g) =

[
ρV (g) 0

0 ρW (g)

]
,

ρV⊗W (g) =


(ρV (g))1,1 ρW (g) (ρV (g))1,2 ρW (g) · · · (ρV (g))1,n ρW (g)
(ρV (g))2,1 ρW (g) (ρV (g))2,2 ρW (g) · · · (ρV (g))2,n ρW (g)

...
...

. . .
...

(ρV (g))n,1 ρW (g) (ρV (g))n,2 ρW (g) · · · (ρV (g))n,n ρW (g)

 .
For the third identity, recall that ρV ∗(g) = (ρV (g−1))>. Since the trace is invariant
under transposition, the identity follows.

Now suppose V is a vector space over C. G is a finite group, so for each g ∈ G,
ρV (g) has finite order. Then for some n ∈ N, (ρV (g))n = I, so the eigenvalues of
ρV (g) are n-th roots of unity. Since the sum of the eigenvalues of a linear map is its
trace, χV (g) is the sum of roots of unity, χV (g) = λ1 + · · ·+λn. The trace of ρV (g−1)
is then λ−1

1 + · · · + λ−1
n . And since the complex conjugate of a root of unity is the

same as the multiplicative inverse (ζ−1 = 1/ζ = |ζ|2/ζ = ζ), we have

χV ∗(g) = χV (g−1) = λ−1
1 + · · ·+ λ−1

n = λ1 + · · ·+ λn = χV (g).

1.3.2 Orthogonality of characters

We can introduce a Hermitian inner product on the vector space of class functions.

Definition 1.3.3. Let ϕ, ψ : G→ C be class functions. Their inner product is

〈ϕ, ψ〉 =
1

|G|
∑
g∈G

ϕ(g)ψ(g−1) =
1

|G|
∑
g∈G

ϕ(g)ψ(g).

The following theorem is the lynchpin upon which all the nice results of repre-
sentation theory rely. In some sense, all of the topics to this point were picked so we
could prove this. After the proof, results will start falling into our laps.

Theorem 1.3.1 (Orthogonality of characters). Let (ρV , V ), (ρW ,W ) be irreducible
representations. Then

〈χV , χW 〉 =

{
1 V ∼= W

0 V 6∼= W.



CHAPTER 1. REPRESENTATION THEORY OF FINITE GROUPS OVER C21

Proof.

(χV , χW ) =
1

|G|
∑
g∈G

χV (g−1)χW (g)

=
1

|G|
∑
g∈G

χV ∗(g)χW (g)

=
1

|G|
∑
g∈G

χV ∗⊗W (g)

=
1

|G|
∑
g∈G

χHom(V,W )(g)

Recalling the definition of character and commuting the trace with sums,

= tr

(
1

|G|
∑
g∈G

ρHom(V,W )(g)

)
.

Recall that 1
|G|
∑

g∈G ρHom(V,W )(g) is a projection map Hom(V,W ) → HomG(V,W ).

Applying Schur’s lemma, we have that 1
|G|
∑

g∈G ρHom(V,W )(g) is a projection map

onto a one dimensional subspace of Hom(V,W ) or it is the zero map; i.e.

1

|G|
∑
g∈G

ρHom(V,W )(g) =




1 0 · · ·
0 0 · · ·
...

...
. . .

 V ∼= W


0 0 · · ·
0 0 · · ·
...

...
. . .

 V 6∼= W.

Taking the trace completes the proof.

Corollary 1.3.1. Let V ∼= V1 ⊕ · · · ⊕ Vr be a decomposition into irreducible repre-
sentations, and let W be an irreducible representation. Then 〈χV , χW 〉 is the number
of Vi isomorphic to W .

Proof. Since χV = χV1 + · · ·+ χVr ,

〈χV , χW 〉 = 〈χV1 , χW 〉+ · · ·+ 〈χVr , χW 〉 .
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In this situation, we say that ni := 〈χV , χW 〉 is the “number of copies of W
contained in V .”

Corollary 1.3.2. The number of copies of each irreducible representation in V is
independent of the decomposition into irreducible representations.

Proof. This is dependent only on 〈χV , χW 〉 for each irreducible W , which is invariant
of the decomposition.

In other words, there is only 1 way to decompose a representation into irreducible
representations.

Corollary 1.3.3. The character χV uniquely determines the representation (ρV , V ).
That is, if (ρV ′ , V

′) has the character χV , then V ′ ∼= V .

Proof. Since (ρV ′ , V
′) has the character χV , V ′ contains the same number of copies

of each irreducible representation as V . So V ′ and V have the same decomposition
into irreducible representations.

Corollary 1.3.4. 〈χV , χV 〉 = 1 if and only if V is irreducible.

Proof. If V is irreducible, then 〈χV , χV 〉 = 1 by the orthogonality of characters. Con-
versely, suppose 〈χV , χV 〉 = 1, and decompose V ∼= V n1

1 ⊕ · · · ⊕ V nr
r into irreducible

representations, where ni is the number of copies of Vi in V . Then

1 = 〈χV , χV 〉 =
r∑
i=1

〈niχVi , niχVi〉 =
r∑
i=1

n2
i .

Since all the ni are positive integers, we must have all ni are 0 except one, which is
1. So V ∼= Vi for some irreducible Vi.

Corollary 1.3.5. V is irreducible if and only if V ∗ is irreducible.

Proof. Since V ∗∗ ∼= V , it suffices to show that if V is irreducible, so is V ∗. If V is
irreducible, then 〈χV , χV 〉 = 1. So

〈χV ∗ , χV ∗〉 =
1

|G|
∑
g∈G

χV ∗(g)χV ∗(g) =
1

|G|
∑
g∈G

χV (g)χV (g) = 〈χV , χV 〉 = 1,

making V ∗ irreducible, as well.

To conclude the section, here is another interpretation of the inner product of
characters.
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Proposition 1.3.4. Let V,W be representations of G. Then

〈χV , χW 〉 = dim(HomG(V,W )).

Proof. The dimension of the subspace of Hom(V,W ) fixed by the action of G,
dim(HomG(V,W )), is the number of copies of the trivial representation in Hom(V,W )
(since in HomG(V,W ), every ρHom(V,W )(g) acts as the identity). So we get

dim(HomG(V,W )) =
〈
χtriv, χHom(V,W )

〉
=

1

|G|
∑
g∈G

χtriv(g)χHom(V,W )(g)

=
1

|G|
∑
g∈G

χV ∗(g)χW (g)

=
1

|G|
∑
g∈G

χV (g)χW (g)

= 〈χV , χW 〉 .

Remark 1.3.1. In particular, the inner product of characters will always be a natural
number. This is pretty remarkable; you would not expect that from the definition of
the inner product!6

1.3.3 The regular representation

Every group can be viewed as a group of symmetries of some set via a group action
G � X. Some groups have a “natural” choice of X that they can act on, such as
dihedral groups, each of which acts on the vertices of a polygon. But there is a
universal choice for any group: action of G on itself by left multiplication. If we
extend this action to an representation on a vector space, we can learn a lot about
the representations of G.

Definition 1.3.4. The group algebra, CG, is the vector space with basis elements
labeled by the elements of G. Multiplication is inherited from multiplication of
elements of g and extended linearly:(∑

g∈G

agg

)(∑
h∈G

bhh

)
:=

∑
g,h∈G

agahgh.

6The trace is magic.
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Remark 1.3.2. This is the same object as the group ring C[G].

Definition 1.3.5. The regular representation is the vector space CG, with the
action of left multiplication:

ρCG(g)

(∑
h∈G

ahh

)
=
∑
h∈G

ahgh.

Since left multiplication by a group element permutes the elements of the group,
matrices in the regular representation look like permutation matrices.

Despite seeming like such a large object, the regular representation has a very
simple character.

Proposition 1.3.5. The character of the regular representation is

χCG(g) =

{
|G| g = e

0 g 6= e.

Proof. The trace of ρCG(g) is the number of diagonal entries of the matrix of ρCG(g),
i.e. the number of h ∈ G such that gh = h. This is 0 if g 6= e and is |G| if g = e.

Corollary 1.3.6. The regular representation contains ni copies of each irreducible
representation Vi, where ni = dim(Vi).

Proof. Using the expression for the character χCG,

〈χCG, χVi〉 =
1

|G|
∑
g∈G

χCG(g)χVi(g) =
1

|G|
|G|χVi(e) = dim(Vi) = ni.

Corollary 1.3.7. Let ni be the dimensions of the irreducible representations of G.

|G| =
r∑
i=1

n2
i .

Proof. On one hand,

〈χCG, χCG〉 =
1

|G|
∑
g∈G

χCG(g)χCG(g) =
1

|G|
|G|2 = |G|.

On the other hand, using the decomposition CG ∼= V n1
1 ⊕ · · · ⊕ V nr

r and the orthog-
onality of characters,

〈χCG, χCG〉 =
r∑
i=1

r∑
j=1

〈
niχVi , njχVj

〉
=

r∑
i=1

〈niχVi , niχVi〉 =
r∑
i=1

n2
i .

Setting these expressions equal gives the result.
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Remark 1.3.3. This result is very useful for figuring out the irreducible representa-
tions of a group G. It gives you information about the dimensions of the irreducible
representations of G, as well as how many there are.

The orthogonality of characters shows that characters of irreducible representa-
tions form an orthonormal set in the space of class functions on G. We can actually
show more, now; they form a basis.

Theorem 1.3.2. Characters of irreducible representations form an orthonormal ba-
sis in the space of class functions on G.

Proof. Linear independence: Orthogonal sets are linearly independent.
Spanning: To show that characters of irreducible representations span the space,

it suffices to show that if ψ : G → C is a class function with 〈ψ, χVi〉 = 0 for all
irreducible Vi, then ψ = 0. Consider the map Ti : Vi → Vi given by

Tiv :=
∑
g∈G

ψ(g)ρVi(g)v.

Observe that T ∈ HomG(Vi, Vi), as

ρHom(Vi,Vi)(g)Ti =
∑
h∈G

ψ(h)ρVi(g)ρVi(h)ρVi(g
−1) =

∑
h∈G

ψ(ghg−1)ρVi(ghg
−1)) = Ti,

where we have used the fact that ψ is a class function and the fact that conjugation
by h just reindexes the sum.

By Schur’s lemma, we get that Ti = λiIVi . To determine the value of λi, we can
compute:

λi =
1

ni
tr(Ti) =

1

ni

∑
g∈G

ψ(g)χVi(g) =
1

ni

∑
g∈G

ψ(g)χV ∗i (g) =
|G|
ni

〈
ψ, χV ∗i

〉
= 0,

as V ∗i is also irreducible. So we get that Ti = 0 for all i.
Now if we define T : CG→ CG by

Tv :=
∑
g∈G

ψ(g)ρCG(g)v,

then this gives us that T = 0, as well. In other words,∑
g∈G

ψ(g)ρCG(g) = 0.

But the linear maps ρCG(g) are linearly independent, as ρCG(g)e = g, which are
independent for different choices of g. So the coefficients ψ(g) must all be 0. This
completes the proof.
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Corollary 1.3.8. The number of irreducible representations of G is equal to the
number of conjugacy classes of G.

Proof. Let C be the collection of conjugacy classes of G. The space of class functions
has the basis {1Cα : Cα ∈ C}, where

1Cα(g) =

{
1 g ∈ Cα
0 g /∈ Cα.

So the space of conjugacy classes has dimension |C|. Since characters of irreducible
representations span this space as well, |C| equals the number of irreducible repre-
sentations.

As another corollary, we also get another orthogonality relation. We will discuss
the interpretation of this in the next section.

Theorem 1.3.3 (2nd orthogonality relation). Let V1, . . . , Vr be the irreducible rep-
resentations of G, let g ∈ G, and let Cg be the conjugacy classe of g. Then for any
h ∈ G,

r∑
i=1

χVi(h)χVi(g) =

{
|G|/|Cg| h ∈ Cg
0 h /∈ Cg.

Proof. Consider the class function 1Cg . Since χV1 , . . . , χVr form an orthonormal basis
for class functions on G, we have

1Cg = a1χV1 + · · ·+ arχVr , where ai =
〈
1Cg , χVi

〉
.

Writing out the definition of the inner product, we get

ai =
1

|G|
∑
x∈G

1Cg(x)χVi(x) =
1

|G|
∑
x∈Cg

χVi(x) =
|Cg|
|G|

χVi(g).

Plugging these values back into the expression for 1Cg , we get

r∑
i=1

χVi(g)χVi =
|G|
|Cg|

1Cg .

Now evaluate both sides at h.
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1.3.4 Character tables

Now that we’ve built up the basic theory of representations and characters, we can
work though examples.7 In particular, we can figure out all the characters of irre-
ducible representations (and hence all the characters) of G. We will keep track of
the values of these characters in a character table.

Definition 1.3.6. Let V1, . . . , Vr be the irreducible representations of G, and let
g1, . . . , gr be representatives of the conjugacy classes of G. A character table of G
is a matrix A with ai,j = χVi(gj).

Although the character table can be formally thought of as a matrix, we will
write it out as a table for clarity.

Example 1.3.5. Let’s compute the character table of S3. The conjugacy classes of
S3 correspond to the different cycle types of permutations, so the conjugacy classes
are [e], [

(
1 2

)
], and [

(
1 2 3

)
]. This also means that we have 3 irreducible repre-

sentations to look for. We have 6 = |S3| =
∑3

i=1 n
2
i , where ni is the dimension of

the i-th irreducible representation, so we must have two 1 dimensional irreducible
representations and one 2 dimensional irreducible representation.

As with all representations, we have the trivial representation. The other 1 dimen-
sional representation comes from the sign homomorphism sgn : S3 → {−1, 1} ⊆ C×.
So we have two characters already:

χtriv(e) = 1, χtriv(
(
1 2

)
) = 1, χtriv(

(
1 2 3

)
) = 1,

χsgn(e) = 1, χsgn(
(
1 2

)
) = −1, χsgn(

(
1 2 3

)
) = 1.

For the last character, χV3 , we have the choice of a few techniques:

• Solve for the values by using χCG = χtriv + χtriv + 2χV3 .

• Recall that the natural permutation representation Vnat contains a copy of Vtriv:
Vnat
∼= Vtriv ⊕W for some representation W . Then χW = χnat − χtriv. Since

we know all the 1-dimensional representations, we can check that 〈χW , χtriv〉 =
〈χW , χsgn〉 = 0, which tells us that W does not contain any 1-dimensional
representations in its decomposition into irreducibles. Since dim(W ) = 2, W
must be the irreducible representation we’re looking for.

7I use the word “basic.” but don’t assume I know so much more than this. I wish I did.
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• Observe that S3
∼= D6, the dihedral group. D6 has a natural 2 dimensional

representation W , by viewing D6 as the symmetries of the plane that fix a
triangle. We can then check that 〈χW , χW 〉 = 1, so W is irreducible.

No matter which technique we use, we get the following character table:

S3 [e] [
(
1 2

)
] [
(
1 2 3

)
]

χtriv 1 1 1
χsgn 1 −1 1
χV3 2 0 −1

Remark 1.3.4. The orthogonality of characters says that the rows of a character
table are orthogonal. The second orthogonality relation says that the columns are
orthogonal.

As the following example shows, computing the character table of an abelian
group is easier than for a nonabelian group, since we just need to look for 1 dimen-
sional representations.

Example 1.3.6. Let’s compute the character table of Z/nZ. Since Z/nZ is abelian,
every element is alone in its conjugacy class. So there are n irreducible represen-
tations. And since n = |Z/nZ| =

∑n
i=1 n

2
i , we must have that all the irreducible

representations are 1-dimensional. This means that they all arise from homomor-
phisms ϕj : Z/nZ → C×. Since ϕj(k)n = ϕj(nk) = ϕj(0) = 1 for all k ∈ Z/nZ,
all elements must be sent to n-th roots of unity. So we get the n homomorphisms,
which are determined by what n-th root of unity 1 is sent to:

ϕj(k) = ζkj, where ζ = e2πi/n.

This gives us χj = ϕj = ϕj1, so we get the character table:

Z/nZ 0 1 2 · · · n− 1
χtriv = χ0 1 1 1 · · · 1

χ1 1 ζ ζ2 · · · ζn−1

χ2 1 ζ2 ζ4 · · · ζ2(n−1)

...
...

...
...

. . .
...

χn−1 1 ζn−1 ζ2(n−1) · · · ζ(n−1)2

As groups get larger, the character table generally becomes more difficult to
determine, but the theory we have developed gives enough tools for us to work out
some larger character tables without too much work.
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Example 1.3.7. Let’s compute the character table of S4. The conjugacy classes of
S4 correspond to the different cycle types of permutations, so the conjugacy classes
are [e], [

(
1 2

)
], [
(
1 2 3

)
], [
(
1 2 3 4

)
], and [

(
1 2

) (
3 4

)
]. So we need to look

for 5 irreducible representations. As before, we have the characters χtriv and χsgn of
1-dimensional representations. And since 24 = |S4| =

∑5
i=1 n

2
i , we must have n3 = 2

and n4 = n5 = 3 (without loss of generality).
There is a normal subgroup N = 〈(1 2)(3 4), (1 3)(2 4)〉 E S4, and S4/N ∼= S3. So

we get representations of S4 by factoring through representations of S3. This gives
χ3, which corresponds to the 2-dimensional irreducible representation of S3.

To figure out χ4, recall that we have Vnat
∼= Vtriv⊕W for some representation W ,

since the subspace span({e1 + e2 + e3 + e4}) is acted upon trivially in the natural
permutation representation. We then get χW = χnat − χtriv:

χW (e) = 3, χW (
(
1 2

)
) = 1, χW (

(
1 2 3

)
) = 0,

χW (
(
1 2 3 4

)
) = −1, χW (

(
1 2

) (
3 4

)
) = −1.

Checking that 〈χW , χW 〉 = 1, we get that χW is the fourth irreducible character.
We can now find χ5 by the decomposition of the regular representation:

χCG = χtriv + χsgn + 2χ3 + 3χ4 + 3χ5.

So we get the character table:

S4 e
(
1 2

) (
1 2 3

) (
1 2 3 4

) (
1 2

) (
3 4

)
χtriv 1 1 1 1 1
χsgn 1 −1 1 −1 1
χ3 2 0 −1 0 2
χ4 3 1 0 −1 −1
χ5 3 −1 0 1 −1

Remark 1.3.5. Instead of using the natural representation to find χ4, we could have
used both orthogonality relations to deduce χ4 and χ5 simultaneously.

Remark 1.3.6. In some cases, such as with the fifth irreducible representation of
S4, it is much easier to figure out the character than it is to find the representa-
tion. Nevertheless, there is actually a general theory which gives all the irreducible
representations and charachers of the symmetric groups Sn.

The following proposition will be useful in our next example.



CHAPTER 1. REPRESENTATION THEORY OF FINITE GROUPS OVER C30

Proposition 1.3.6. The number of 1-dimensional (irreducible) representations of G
is the the order of the abelianization |Gab|.

Proof. Recall that a 1-dimensional representation is a homomorphism ϕ : G→ C×.
Since C× is abelian, this homomorphism factors through the abelianization of G:

G C×

Gab

ϕ

ϕ̃

So the number of 1-dimensional representations of G is the number of homomor-
phisms ϕ̃ : Gab → C×. That is, the number of 1-dimensional representations of G
is the number of 1-dimensional representations of Gab. Gab is abelian, so every one
of its elements is alone in its own conjugacy class. So there are |Gab| 1-dimensional,
irreducible representations of Gab.

Example 1.3.8. Let’s compute the character table of A4. The conjugacy classes of
S4 correspond to the different cycle types of even permutations, but one of the classes
gets split in half when passing to A4, since the only permutations which conjugated
elements between these two classes were odd permutations (which are not included
in A4). So the conjugacy classes are [e], [

(
1 2 3

)
], [
(
1 3 2

)
], and [

(
1 2

) (
3 4

)
].

So we need to look for 4 irreducible representations.
To find out the number of 1 dimensional representations, observe that Aab

4
∼=

Z/3Z. So the proposition says that there are 3 1 dimensional representations. More-
over, since Aab

4 = A4/[G,G] (where [G,G] is the commutator subgroup), we have a
surjective homomorphism A4 → Z/3Z. So these 1 dimensional representations are
the representations of Z/3Z, lifted up to A4. So we get χtriv,

χ2(e) = 1, χ2(
(
1 2 3

)
) = ζ, χ2(

(
1 3 2

)
) = ζ2, χ2(

(
1 2

) (
3 4

)
) = 1,

χ3(e) = 1, χ3(
(
1 2 3

)
) = ζ2, χ3(

(
1 3 2

)
) = ζ, χ3(

(
1 2

) (
3 4

)
) = 1,

where ζ = e2πi/3.
To find the remaining character, we check 12 = |A4| =

∑4
i=1 n

2
i , which gives us

that n4 = 3. We can now use the decomposition of the regular representation to
solve for χ4:

χ4 =
χCG − χtriv − χ2 − χ3

3
.
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So we get the character table:

A4 e
(
1 2 3

) (
1 3 2

) (
1 2

) (
3 4

)
χtriv 1 1 1 1
χ2 1 ζ ζ2 1
χ3 1 ζ2 ζ 1
χ4 3 0 0 −1

Example 1.3.9. Let’s compute the character table of

D8 =
〈
r, s | s2 = r4 = 1, rs = sr3

〉
.

The conjugacy classes are [e], [s], [r], [rs], and [r2], so we need to find 5 irreducible
representations. Dab

8 = D8/{e, r2} ∼= Z/2Z × Z/2Z, so the four 1 dimensional
representations come from homomorphisms Z/2Z × Z/2Z → C× (with r2 7→ 1).
The images of elements in Z/2Z × Z/2Z must have multiplicative order 2, so they
must be 1 or −1. This gives us the four 1 dimensional representations, determined
by whether r and s get sent to 1 or −1.

We now have 8 = |D8| =
∑5

i=1 n
2
i , so n5 = 2. The natural 2 dimensional

representation is the remaining irreducible representation; we can check that it is
irreducible by checking the decomposition of the regular representation. So we get
the character table:

D8 e s r rs r2

χ1 1 1 1 1 1
χ2 1 −1 1 −1 1
χ3 1 1 −1 −1 1
χ4 1 −1 −1 1 1
χ5 2 0 0 0 −2

Remark 1.3.7. You can check that the quaternion group Q8 has the same character
table as D8. So a character table does not uniquely determine a group.



Appendix A

Linear Algebra Background

This appendix has far more results than are actually used in the text, but the results
are interesting in their own right. Also, they are used to develop the theory to the
point where you are familiar with the objects at hand (which is the whole point of
the appendix, anyway).

A.1 The trace

In linear algebra, the determinant of matrix gives a lot of useful information about
the associated linear transformation. The determinant is a homomorphism det :
GLn(C)→ C×, so it tells us about the multiplicative structure of matrices (composi-
tion of the linear transformation). This section is about the trace, a homomorphism
tr : Mn×n(C)→ C, which tells us about the additive structure of matrices.

Definition A.1.1. Let A be a matrix with entries ai,j. The trace of A is

tr(A) =
n∑
i=1

ai,i.

Adding together the diagonal entries of a matrix seems arbitrary. But it turns
out that this is a very good quantity to study. From the defnition, we can see
tr(A+B) = tr(A) + tr(B). But hte trace has other nice properties. For instance, it
is invariant of the choice of basis.

Lemma A.1.1. Let A,B be n× n matrices. Then

tr(AB) = tr(BA).

32
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Proof. Write out the definitions of the trace and of matrix multiplication:

tr(AB) =
n∑
i=1

[AB]i,i =
n∑
i=1

n∑
k=1

ai,kbk,i =
n∑
k=1

n∑
i=1

bk,iai,k =
n∑
k=1

[BA]k,k = tr(BA).

Proposition A.1.1. The trace is invariant under change of basis. In particular,

tr(A) = tr(BAB−1).

Proof. By the previous lemma,

tr(B(AB−1)) = tr((AB−1)B) = tr(A).

Since the trace is invariant under change of basis, as you might suspect, it has an
interpretation dependent only on the linear transformation, no matrix shenanigans
needed.

Proposition A.1.2. Let A be an n× n matrix over C. Then

tr(A) =
n∑
i=1

λi,

where the λi are the eigenvalues of A, counted with multiplicity.

Here is a proof, assuming you know about the Jordan canonical form of a matrix.

Proof. Write A in its Jordan canonical form, so A = PJP−1, where J is upper
triangular with the eigenvalues of A long the diagonal. Then

tr(A) = tr(PJP−1) = tr(J) =
n∑
i=1

λi.

Here is another proof, which does not assume knowledge of the Jordan canonical
form.

Proof. By the fundamental theorem of algebra, the characteristic polynomial of A
factors as cA(t) = (−1)n(t− λ1) · · · (t− λn). When we multiply this out, each term
corresponds to a choice of, for each i, multiplying either a t or a λi; for example, the
tn term comes from choosing all the ts, and the constant term comes from choosing
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all the −λi. The coefficient of tn−1 in this polynomial is the sum of all the terms
where we only pick one of the λi to multiply. So it is

(−1)n(−λ1 − λ2 − · · · − λn) = (−1)n−1

n∑
i=1

λi.

On the other hand, the characteristic polynomial is det(A − tI). If we evaluate
this, we will only get terms with a tn−1 from the product of diagonal entries of A−tI;
indeed, any term containing ai,j off the diagonal of A− tI will not contain ai,i− t or
aj,j − t, so we can have at most tn−2 in this term. This means that the coefficient of
tn−1 in cA(t) = det(A− tI) is the coefficient of tn−1 in (a1,1− t)(a2,2− t) · · · (an,n− t).
By the same argument as above, this coefficient is

(−1)n−1(a1,1 + a2,2 + · · ·+ an,n) = (−1)n−1 tr(A).

These two expressions are both the coefficient of tn−1 in the characteristic poly-
nomial of A, so they are equal. We get

tr(A) =
n∑
i=1

λi.

Here are some vague thoughts to help you interpret the trace: What does a
diagonal element of a matrix refer to? If we fix a basis {v1, . . . , vn} of V , ai,i is how
much in the direction of vi Avi is. If we assume this to be an orthonormal basis,
ai,i = 〈Avi, vi〉. The trace is invariant under change of basis, and we can think of this
in the sense of “if we sum the amount that A keeps vectors in the same direction, but
in every direction, we should get an quantity invariant of which vectors we picked
for our directions.”

On the other hand, the trace is also the sum of the eigenvalues (with multiplic-
ities). In this sense, the picture is even cleaner. The trace is the sum of how much
A keeps vectors in the same direction, for every direction. In the case where you
have a basis of eigenvectors, Avi is now entirely in the direction of vi. So the trace is
really just a measure of how much A moves or does not move vectors into a different
direction from where they started.
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A.2 Products and Direct sums

The Cartesian product is a way of combining sets to get ordered pairs of elements
between sets:

A×B := {(a, b) : a ∈ A, b ∈ B}.
For infinite products (indexed by some infinite set I), we get something that looks
like this: ∏

α∈I

Aα := {(aα)α∈I : aα ∈ Aα ∀α ∈ I}.

In a similar way, we can construct a product of vector spaces.

Definition A.2.1. If Vα are vector spaces, the product
∏

α∈I Vα is a vector space
with componentwise addition and scalar multiplication:

c(aα)α∈I + (bα)α∈I = (caα + bα)α∈I .

As you can imagine, products can be very large. Even if Vα = Q, viewed as
a vector space over Q, we can get uncountable products by taking a product of
uncountably many such Vα. However, there is another way to combine spaces which
produces spaces which are not as large.

Definition A.2.2. If Vα are vector spaces, the direct sum
⊕

α∈I Vi is the following
subspace of

∏
α∈I Vα:⊕
α∈I

Vα := {(aα)α∈I : aα = 0 for all but finitely many α}.

Remark A.2.1. For finite direct sums, the definition is the same as the product:

V1 ⊕ · · · ⊕ Vn = V1 × · · · × Vn.

The direct sum is not such an unfamiliar concept. Here is an example you are
already familiar with.

Example A.2.1. Let P be the collection of polynomials with coefficients in C. This
is a vector space over C. By looking at the coefficients of a polynomial, polynomials in
P look like ordered tuples of coefficients (which can be 0); for example, the polynomial
5x3−

√
2x+i can be thought of as the sequence (i,−

√
2, 0, 5, 0, . . . ). Every polynomial

only has finitely many nonzero terms, so

P ∼=
∞⊕
j=1

C.



APPENDIX A. LINEAR ALGEBRA BACKGROUND 36

This is not the same as
∏∞

j=1 C. In the product, we have elements such as

(1, 1, 1, . . . ), which correspond to power series such as 1 + x + x2 + · · · . These are
not polynomials, though. In this case, the product,

∏∞
j=1 C is the vector space of

formal power series1 with coefficients in C.

1The word formal here indicates that we only care about the symbols, without any regard to
whether these series actually converge.
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A.3 Dual spaces

Dual spaces are a common construction in advanced linear algebra.

Definition A.3.1. Let V be a vector space over a field F . Then the dual vector
space V ∗ is the vector space of linear functions T : V → F .

Remark A.3.1. At first glance, this definition seems fairly arbitrary and unmoti-
vated. Here’s why we care about dual spaces. One of the central ideas of functional
analysis is the study of (infinite dimensional) vector spaces of functions, such as
C([0, 1]) = {f : [0, 1] → R | f is continuous}. In this setting, many familiar func-

tions are elements of the dual space, such as the integration map: T (f) :=
∫ 1

0
f(x) dx.

Here is a way for us to talk about vectors in the dual space.

Proposition A.3.1. Let V be a finite dimensional vector space with basis {v1, . . . , vn}.
Then {v∗1, . . . , v∗n} is a basis for V ∗, where

v∗i (vj) =

{
1 j = i

0 j 6= i.

Proof. Let v∗i be defined as above; that is, for each i,

v∗i (a1v1 + · · ·+ anvn) = ai.

The v∗i are linearly independent: if a1v
∗
1 + · · ·+ anv

∗
n = 0, then for each i,

0 = a1v
∗
1(vi) + · · ·+ anv

∗
n(vi) = ai.

So all the ai equal 0.
To see that the v∗i span V ∗, let f ∈ V ∗. Since f is linear and V is finite dimen-

sional, f is uniquely determined by f(vi) for 1 ≤ i ≤ n. Letting ai = f(vi) for each
i, we get that

f = a1v
∗
1 + · · ·+ anv

∗
n,

as these agree when applied to each of the vi.

Linear maps between vector spaces give rise to linear maps between dual spaces.

Definition A.3.2. Given a linear map T : V → W , the induced dual map T ∗ :
W ∗ → V ∗ is given by f 7→ f ◦ T .

V W

V ∗ W ∗

T

T ∗
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Here’s why this construction is called the “dual” space.

Proposition A.3.2. If T : V → W is a linear transformation with matrix A, then
the dual map T ∗ : W ∗ → V ∗ has matrix representation A>.

Proof. Let {v1, . . . , vn} and {w1, . . . , wm} be ordered bases of V and W , respectively.
Let {v∗1, . . . , v∗n} and {w∗1, . . . , w∗m} be the corresponding dual bases. We have that

(T ∗w∗i )

(
n∑
j=1

bjvj

)
= w∗i

(
n∑
j=1

bjTvj

)

= w∗i

(
n∑
j=1

bj

m∑
k=1

ak,jwk

)

=
n∑
j=1

m∑
k=1

bjak,j w
∗
i (wk)︸ ︷︷ ︸
δi,k

=
n∑
j=1

bjai,j

=
n∑
j=1

ai,jv
∗
j

(
n∑
`=1

b`v`

)
,

so T ∗w∗i =
∑n

j=1 ai,jv
∗
j . The definition of matrix multiplication gives us [T ∗]j,i = ai,j,

and we are done.

Here’s the picture: if vectors in V are column vectors, then vectors in the dual
space are row vectors. In the vector space V , matrices act on the left as Av. In the
dual space, matrices act on the right, and the action of the corresponding matrix for
the dual transformation looks like v∗A>, where v∗ is a row vector.

In this picture, what does v∗i (vj) look like? If these are the basis vectors for their
respective spaces, we get δi,j. This agrees with multiplication of the vectors v>i vj:

v∗i (vj) =
[

vi
] vj

 .
Now notice that if we fix v∗i , this becomes linear in v if we replace vj by any v ∈ V .
Correspondingly. if we fix vj, this is linear in f if we replace v∗i by any f ∈ V ∗. So,
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in general, f(v) gives the same value as multiplication of the vectors f>v:

f(v) =
[

f
] v

 .
For this reason, if v ∈ V and f ∈ V ∗, we often denote f(v) as the pairing 〈v, f〉.
With this notation, the action of matrices looks like

〈Av, f〉 = f(Av) = (A∗f)(v) = 〈v,A∗f〉 .

This gives an analogy between the relationship between a vector and its dual space
and the relationship between an inner product space and itself.

Warning A.3.1. This should not be confused with the concept of a Hermitian inner
product; with a Hermitian inner product on a complex vector space, the adjoint A†

of A satisfies 〈Av,w〉 = 〈v, A†w〉, but the matrix of the adjoint is the conjugate
transpose of A, not just the transpose.
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A.4 Tensor products of vector spaces

The tensor product is a way of “combining vector spaces in a bilinear manner.” Here
is a motivating example.

Example A.4.1. Consider the vector space Pn of polynomials of degree ≤ n with
coefficients in C. Suppose we want to construct a space of polynomials in 2 variables,
x and y, of x-degree ≤ n and y-degree ≤ n. Your first guess might be to try to use
Pn ⊕ Pn, but this has dimension 2(n + 1); the desired space of polynomials in 2
variables should have dimension (n+ 1)2.

Now observe that we can obtain polynomials in 2 variables in the following way:
take polynomials f(x) and g(y), and multiply them. This gives another reason
why Pn ⊕ Pn would not work. If we tried to identify (f(x), g(y)) as the polynomial
f(x)g(y), we run into the problem of how scalar multiplication works; a(f(x), g(y)) =
(af(x), ag(y)), but a · f(x)g(y) is not (af(x))(ag(y)). This issue arises because the
map (f(x), g(y)) 7→ f(x)g(y) is bilinear, rather than linear; in particular, scalar
multiplication works separately, in each of the two coordinates of (f(x), g(y)).

We want to find a method of combining these vector spaces so that the end result
can take this bilinear map and interpret it as a linear map (since a single vector
space should work with linear maps). The tensor product, Pn⊗Pn will be the space
we want.

Definition A.4.1. Let V and W be vector spaces over F . A map T : V ×W is
bilinear if T (·, w) and T (v, ·) are linear for each v ∈ V and w ∈ W . T is called
F -balanced if T (av, w) = T (v, aw) for all a ∈ F .

Example A.4.2. Let V be an inner product space over R. Then 〈·, ·〉 : V × V → R
is a bilinear and R-balanced; it is linear in each of the individual entries. Is there a
vector space related to V ×V where we can view the inner product as a linear map?
The tensor product, V ⊗ V , will give us the solution.

To construct the tensor product of V and W , we want to combine V and W in
a way such that scalars act in both coordinates of (v, w). How do we construct such
an object? The answer is basically “just do it.”

Definition A.4.2. The tensor product of vector spaces V and W (over a field F ),
denoted V ⊗W (or V ⊗F W ), is the quotient

⊕
(v,w)∈V×W F (v, w)/Z, where Z is the

subspace generated by all elements of the form

1. (v + v′, w)− (v, w)− (v′, w)
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2. (v, w + w′)− (v, w)− (v, w′)

3. (av, w)− (v, aw)

for all v, v′ ∈ V , w,w′ ∈ W , and a ∈ F . The image of (v, w) in V ⊗W is denoted as
v ⊗ w and called a simple tensor.

Let’s unpack this; what does this definition mean? We start with a a huge vector
space with a basis given by all possible linear combinations of pairs (v, w) ∈ V ⊗W );
this has everything we want, but also a lot more. To establish the relations of
bilinearity, we quotient out by corresponding elements. In other words, since in this
quotient, (v + v′, w)− (v, w)− (v′, w) = 0, we get the relation that

(v + v′, w) = (v, w) + (v′, w).

So the inclusion of the first two types of elements in Z enforces the condition that in
the quotient, we can split up elements linearly in each component. Similarly, since
in this quotient, (av, w)− (v, aw) = 0, we get that

(av, w) = (v, aw).

So scalar multiplication acts individually in each component (and can “pass from
one component to the other”).

In summary, we have just taken a huge space which contains the space we want
and enforced the relations we want.2

Let’s take a look at what this space looks like.

Example A.4.3. Consider V ⊗W over C. We have simple tensors, (v, w), and also
linear combinations of simple tensors, such as

4(v1 ⊗ w1) +
√

3(v2 ⊗ w2) + (5− i)(v1 ⊗ w3).

Here, 4(v1 ⊗ w1) means (4v1) ⊗ w1 or v1 ⊗ (4w1) (these are equal). Since the first
and third terms both have v1 in the first component, we can combine them:

= v1 ⊗ (4w1) +
√

3(v2 ⊗ w2) + v1 ⊗ (5− i)w3

= v1 ⊗ (4w1 + (5− i)w3) +
√

3(v2 ⊗ w2).

2Enforcing these relations by quotienting out by the proper subspace is a really clever idea.
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Example A.4.4. Here are some more examples of how simple tensors work, so you
can get used to them. Let k ∈ Z. Then

k(v ⊗ w) = (v ⊗ w) + · · ·+ (v ⊗ w) = (v + · · ·+ v)⊗ w) = (kv)⊗ w.

Similarly,
k(v ⊗ w) = v ⊗ (kw).

If the field F contains Z, then this is consistent with our relation of scalar multipli-
cation:3

(kv)⊗ w = v ⊗ (kw).

We also have
(−1)(v ⊗ w) = (−v)⊗ w = v ⊗ (−w),

0⊗ w = (0v)⊗ w = 0(v ⊗ w) = 0,

v ⊗ 0 = 0⊗ w = 0.

Warning A.4.1. It is a really common mistake to think of consider simple tensors
as the only elements of the tensor product. Do not do this. The tensor product has
all linear combinations of simple tensors as its elements. Sometimes, terms can be
simplified into fewer simple tensors, but this is not always the case.

Example A.4.5. Consider R2 ⊗ R2. We cannot simplify the term

(1, 0)⊗ (0, 1) + (0, 1)⊗ (1, 0)

into a single simple tensor. In general, elements of the form

v1 ⊗ w1 + v2 ⊗ w2

with v1 6= v2 and w1 6= w2 cannot be written as a single simple tensor.

There is always a map V ×W → V ⊗W given by (v, w) 7→ v⊗w. This map is not
surjective (as was just warned). This is how the tensor product “converts bilinear
maps into linear maps.”

Proposition A.4.1 (tensor product universal property). Let V,W,X be vector spaces
and φ : V ×W → X be such that

3If F does not contain Z, then kv is interpreted in the sense of kv := v + · · ·+ v, where we add
up k of these.
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1. φ(v + v′, w) = φ(v, w) = φ(v′, w) (left biadditivity),

2. φ(v, w + w′) = φ(v, w) + φ(v, w′) (right biadditivity),

3. φ(av, w) = φ(v, aw) (F -balanced),

for all v, v′ ∈ V , w,w′ ∈ W , and a ∈ F . There exists a unique linear map Φ :
V ⊗W → X such that Φ(v ⊗ w) = φ(v, w) for all v ∈ V and w ∈ W .

V ×W X

V ⊗W

φ

Φ

Proof. Given φ, define

Φ

(
n∑
i=1

ai(vi ⊗ wi)

)
:=

n∑
i=1

aiφ(vi, wi).

The conditions on φ guarantee that this map is well-defined; i.e. it matters not what
linear combination we use to express the input (if there is more than 1 that works).
This map is linear by definition and satisfies Φ(v ⊗ w) = φ(v, w) (this is the case
where n = 1 and a1 = 1).

For uniqueness, let Ψ : V ⊗W → X be another linear map such that Ψ(v⊗w) =
φ(v, w) for all v ∈ V and w ∈ W . Using the linearity of Ψ, we get that

Ψ

(
n∑
i=1

ai(vi ⊗ wi)

)
=

n∑
i=1

aiφ(vi, wi).

So Ψ = Φ.

Remark A.4.1. This is often taken to be the “real definition” of the tensor product,
as in “a tensor product is anything that satisfies this universal property.” From this
point of view, our construction from before would be the proof of a theorem that
such an object exists. One reason why people prefer this definition is that it is the
easiest way to prove basically every property of the tensor product.

Basically, you always want to use the universal property when proving something
involving tensor products. Here is an example.
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Proposition A.4.2. Let Pn,n be the vector space of polynomials in 2 variables, x
and y, of x-degree ≤ n and y-degree ≤ n, and let Pn be the vector space of single
variable polynomials of degree ≤ n. Then Pn ⊗ Pn ∼= Pn,n.

The idea is that we use the universal property to construct a linear map Φ :
Pn ⊗ Pn → Pn,n and then find an inverse.

Proof. Consider the map φ : Pn × Pn → Pn,n sending (f(x), g(y)) 7→ f(x)g(y). This
is bilinear and C-balanced, so by the universal property of the tensor product, there
exists a linear map Φ : Pn ⊗ Pn → Pn,n such that Φ(f(x)⊗ g(y)) = f(x)g(y).

To show that Φ is an isomorphism, we find an inverse Ψ : Pn,n → Pn⊗Pn. Define

Ψ

(
n∑

i,j=0

ai,jx
iyj

)
=

n∑
i,j=0

ai,j(x
i ⊗ yj).

By definition, Ψ is a linear map. We check that Φ and Ψ are inverses:

Φ ◦Ψ

(
n∑

i,j=0

ai,jx
iyj

)
= Φ

(
n∑

i,j=0

ai,j(x
i ⊗ yj)

)
=

n∑
i,j=0

ai,jx
iyj.

To check the other way, we want to show that Ψ ◦Φ is the identity on Pn⊗Pn. Note
that since Φ and Ψ are linear, Ψ◦Φ is linear. So it suffices to just check that Ψ◦Φ is
acts as the identity when applied to simple tensors. Moreover, by splitting up terms
bilinearly (like (x + 2x2) ⊗ y4 = x ⊗ y4 + 2x2 ⊗ y4), it suffices to check that Ψ ◦ Φ
acts as the identity when applied to terms of the form xi ⊗ yj:

Ψ ◦ Φ
(
xi ⊗ yj

)
= Ψ

(
xiyj

)
= xi ⊗ yj.

So Φ : Pn ⊗ Pn → Pn,n is a linear map with an inverse. That is, Pn ⊗ Pn ∼= Pn,n, as
desired.

Remark A.4.2. Whenever you want to prove that something can be described by a
tensor product (i.e. it is isomorphic to a tensor product of something), the proof will
proceed almost exactly as above. When you want to prove that Φ is invertible, it’s
usually possible to show that it is surjective. But showing that it is injective usually
ends up being pretty intractable. So try to always use the universal property and
then find an inverse.

In the above example, Pn had a basis of {1, x, . . . , xn}, and Pn,n had a basis of
{1, x, . . . , xn, y, xy, . . . , xny, y2, . . . , xnyn} That is, we obtained a basis for Pn,n by
taking pairs of basis elements of Pn. This gives us a general way to find a basis of
V ⊗W in terms of a bases of V and W .
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Proposition A.4.3. Let V and W be vector spaces over F with ordered bases
{v1, . . . , vn} and {w1, . . . , vm}, respectively. Then V ⊗W has the basis

B = {vi ⊗ wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

Proof. B spans V ⊗W : It sufficces to show that B contains all simple tensors. Let
v ⊗ w ∈ V ⊗W . Then express

v ⊗ w =

(
n∑
i=1

aivi

)
⊗

(
m∑
j=1

bjwj

)
=

n∑
i=1

m∑
j=1

aibj(vi ⊗ wj).

As each vi ⊗ wj is in B, v ⊗ w is in the span of B.
B is linearly independent: Suppose that

∑n
i=1

∑m
j=1 ci,j(vi⊗wj) = 0. We want to

show that ck,` = 0 for each ordered pair (k, `). Consider the map φk,` : V ×W → F
given by

φi,j

(
n∑
i=1

aivi,
m∑
j=1

bjwj

)
= akb`.

The map φk,` is bilinear and F -balanced, so by the universal property of the tensor
product, there is a linear map Φk,` : V ⊗W → F such that

Φk,`

((
n∑
i=1

aivi

)
⊗

(
m∑
j=1

bjwj

))
= akb`.

Now observe that

Φk,`

(
n∑
i=1

m∑
j=1

ci,j(vi ⊗ wj)

)
= ck,`.

On the other hand, since
∑n

i=1

∑m
j=1 ci,j(vi ⊗ wj) = 0,

Φk,`

(
n∑
i=1

m∑
j=1

ci,j(vi ⊗ wj)

)
= Φk,`(0) = 0.

This holds for any (k, `), so all the ck,` = 0.

Corollary A.4.1. If dim(V ) = n and dim(W ) = m, then dim(V ⊗W ) = nm.

Proof. The basis {vi ⊗ wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m} of V ⊗W has nm elements.
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This gives a good reasoning for the notation ⊗ for the tensor product. This is a
way to “multiplicatively” combine two vector spaces. For example, if V is a vector
space with basis {} and W is a vector space with basis {}, then V ⊗W is a basis
with vector space {}

Here are some more properties of tensor products. If you can follow the proofs
well, then you should have a good enough understanding of the tensor product. First,
the tensor product is symmetric:

Proposition A.4.4. Let V,W be vector spaces over F . Then V ⊗W ∼= W ⊗ V .

Proof. Let φ : V ×W → W ⊗ V send (v, w) 7→ w ⊗ v. The map φ is bilinear and
F -balanced, so by the universal property of the tensor product, there is a linear map
Φ : V ⊗W → W ⊗ V such that Φ(v ⊗ w) = w ⊗ v.

To show that Φ is an isomorphism, we show that it has an inverse. If we make the
same construction, we get a linear map Ψ : W ⊗ V → V ⊗W such that Ψ(w⊗ v) =
v ⊗ w. To show that these are inverses, by the linearity of Φ and Ψ, it suffices to
show that Ψ ◦ Φ and Φ ◦Ψ act as the identity on simple tensors. We have:

Ψ ◦ Φ(v ⊗ w) = Ψ(w ⊗ v) = v ⊗ w,

Φ ◦Ψ(w ⊗ v) = Ψ(v ⊗ w) = w ⊗ v.
So Φ : V ⊗W → W ⊗ V is an isomorphism.

Tensoring by the base field (or equivalently a 1-dimensional vector space) does
nothing.

Proposition A.4.5. Let V be a vector space over F . Then V ⊗ F ∼= V .

Proof. Let φ : V × F → V send (v, a) 7→ av. This is bilinear and F -balanced, so by
universal property of the tensor product, there is a linear map Φ : V ⊗ F → V such
that Φ(v ⊗ a) = av.

To show that Φ is an isomorphism, we find an inverse. Consider the linear map
Ψ : V → V ⊗ F sending v 7→ (v, 1). We have

Φ ◦Ψ(v) = Φ(v ⊗ 1) = v.

For the reverse composition, by the linearity of Φ and Ψ, it suffices to show that
Ψ ◦ Φ is the identity on simple tensors. We have

Ψ ◦ Φ(v ⊗ a) = Ψ(av) = (av)⊗ 1 = v ⊗ a.

So Φ is the desired isomorphism.
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Tensor products distribute over direct sums.

Proposition A.4.6. Let Vα, α ∈ I and W be vector spaces over F . Then(⊕
α∈I

Vα

)
⊗W ∼=

⊕
α∈I

(Vα ⊗W ).

Proof. Let ψ :
(⊕

α∈I Vα
)
×W →

⊕
α∈I(Vα ⊗W ) send ((vα)α∈I , w) 7→ (vα ⊗ w)α∈I .

This is bilinear and F -balanced, so by universal property of the tensor product, there
is a linear map Φ :

(⊕
α∈I Vα

)
⊗W →

⊕
α∈I(Vα ⊗W ) such that Φ((vα)α∈I ⊗ w) =

(vα ⊗ w)α∈I .
To show that Φ is an isomorphism, we find an inverse. Consider the bilinear,

F -balanced maps ψα : Vα ×W → (
⊕

α∈I Vα)⊗W sending (vα, w) 7→ vα ⊗ w, where
vα ∈

⊕
α∈I Vα has all components 0, except vα in the α-th component. By the

universal property of the tensor product, there are linear maps Ψα : Vα ⊗ W →
(
⊕

α∈I Vα) ⊗ W such that Ψα(vα ⊗ w) = vα ⊗ w for each α. Now construct Φ :⊕
α∈I(Vα ⊗W ) →

(⊕
α∈I Vα

)
by Φα =

∑
α∈I Φα. This is well-defined because for

any input, only finitely many vα are nonzero, so we area only ever adding up finitely
many images of the Φα at a time.

By the linearity of Φ and Ψ, it suffices to check that they are inverses of each
other on simple tensors. We have

Ψ ◦ Φ((vα)α∈I ⊗ w) = Ψ((vα ⊗ w)α∈I) = (vα)α∈I ⊗ w,

Φ ◦Ψ((vα ⊗ w)α∈I) = Φ((vα)α∈I ⊗ w) = (vα ⊗ w)α∈I .

So Φ is the desired isomorphism.

We finish the section with an explanation of how linear maps interact with the
tensor product.

Definition A.4.3. Let T : V → X and S : W → Y be linear maps. The tensor
product of linear maps S ⊗ T : V ⊗W → X ⊗ Y is the the unique linear map
given by (S ⊗ T )(v ⊗ w) := Tv ⊗ Sw.

Proposition A.4.7. T ⊗ S exists (and is unique).

Proof. Consider the bilinear, F -balanced map φ : V ×W → X⊗Y given by (v, w) 7→
Tv ⊗ Sw. By the universal property of the tensor product, there is a unique linear
map Φ : V ⊗W → X⊗Y such that Φ(v⊗w) = Tv⊗Sw. Φ is the map we want.
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Suppose A and B are matrices. What does the matrix of A⊗B look like? Order
the basis of V ⊗W lexicographically:

{v1 ⊗ w1, . . . , v1 ⊗ wm, v2 ⊗ w1, . . . , v2 ⊗ wm, . . . , vn ⊗ wm}.

Since (A ⊗ B)(vi ⊗ wj) = Avi ⊗ Bwj, the (k, `) coefficient of (A ⊗ B)(vi ⊗ wj) is
ai,kb`,j. So with this ordering of the basis, the matrix of A⊗B (in block matrix form)
looks like 

a1,1 B a1,2 B · · · a1,n B
a2,1 B a2,2 B · · · a2,n B
...

...
. . .

...
an,1 B an,2 B · · · an,n B

 .
Example A.4.6. Recall our proof that if V has basis {v1, . . . , vn} and W has basis
{w1, . . . , wm}, then V ⊗W has the basis {vi ⊗ wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. We had
a map Φk,` such that

Φk,`

(
n∑
i=1

m∑
j=1

ci,j(vi ⊗ wj)

)
= ck,`.

In hindsight, we can see that this map is a member of the dual basis of V ⊗W . In
fact, we can construct it as a tensor product of linear maps:

Φk,` = v∗k ⊗ w∗` ,

where v∗k and w∗` are members of the dual bases of V ∗ and W ∗, respectively. Here,
the codomain is F ⊗ F ∼= F .

This recipe tells us something about dual spaces and tensor products, in general.

Proposition A.4.8. Let V,W be finite dimensional vector spaces over F . Then

V ∗ ⊗W ∗ ∼= (V ⊗W )∗.

Proof. Consider the map ψ : V ∗ ×W ∗ → (V ⊗W )∗ given by (T, S) 7→ T ⊗ S (here,
T ⊗ S is a linear functional because F ⊗ F ∼= F ). The map ψ is bilinear and F -
balanced, so by the universal property of the tensor product, there is a linear map
Φ : V ∗ ⊗W ∗ → (V ⊗W )∗ such that Φ(T ⊗ S) = T ⊗ S (the second usage meaning
the tensor product of linear maps).

The map Φ is injective. Suppose Φ(T ⊗ S) = 0. Then (Tv) · (Sw) = 0 for all
v. This means that either Tv = 0 for all v ∈ V or Sw = 0 for all w ∈ W ; i.e.
either T = 0 or S = 0. But then T ⊗ S = 0, meaning that ker(Φ) = {0}. So
Φ is injective. Since V ∗ ⊗W ∗ and (V ⊗W )∗ are finite dimensional with the same
dimension (dim(V ) · dim(W )), Φ is also surjective. So Φ is an isomorphism.
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Remark A.4.3. This is not true for infinite dimensional vector spaces, since the
dual of an infinite dimensional vector space is much bigger than the space itself.
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